Reached here #1

Reached here #2

Reached here #3

Reached here #4


Warning: Parameter 1 to PlgSystemAdvancedModuleHelper::onRenderModule() expected to be a reference, value given in /home/factengi/public_html/libraries/joomla/event/dispatcher.php on line 165

Warning: Parameter 1 to PlgSystemAdvancedModuleHelper::onRenderModule() expected to be a reference, value given in /home/factengi/public_html/libraries/joomla/event/dispatcher.php on line 165

Warning: Parameter 1 to PlgSystemAdvancedModuleHelper::onRenderModule() expected to be a reference, value given in /home/factengi/public_html/libraries/joomla/event/dispatcher.php on line 165

Warning: Parameter 1 to PlgSystemAdvancedModuleHelper::onRenderModule() expected to be a reference, value given in /home/factengi/public_html/libraries/joomla/event/dispatcher.php on line 165
FEKL Introduction

Loading color scheme


Notice: Undefined property: stdClass::$productnum in /home/factengi/public_html/modules/mod_vertical_menu/types/joomlacontent/menu.php on line 127

FEKL Introduction

FactEngine Knowledge Language (FEKL) is a controlled natural language to define Fact-Based Models, enabling the Semantic View.

Enterprise conceptual modelling is made easy with FEKL where business rules are defined in natural language.

In brief:

1. FEKL produces or documents the semantic information of knowledge graphs, and/or graph/relational database;
           ER-Diagrams, Property Graph Schema and Object Role Models are generated automatically from FEKL statements.

2. Only Value Types, Entity Types, Fact Types and Internal Uniqueness Constraints are needed to form a basis database schema, and Internal/External Uniqueness Constraints create multi-column table/node uniqueness constraints/indexes;

3. FEKL can produce data for tables/nodes in a database. I.e. Can define Facts for Fact Types.

The following are valid FEKL statements:

There are many reasons why you may prefer to create a conceptual model using natural language rather than drawing diagrams. These include:

1. Capturing the business rules of your enterprise conceptual model;
2. Automatically generating model definition based on NLP (Natural Langue Processing) of a corpus of documents;
3. It can be quicker to create diagrams using natural language, rather than using a GUI (Graphical User Interface), depending on your proficiency with FEKL; and
4. Business Analysts can capture the Universe-of-Discourse, or the business domain knowledge, in natural language. I.e. Analysts use FEKL as a tool to capture business requirements.